

LA-UR-21-26296

 $\label{lem:proved} \mbox{Approved for public release; distribution is unlimited.}$

Title: LANL Platforms Update

Author(s): Lujan, James Westley

Intended for: International Conference

Issued: 2021-07-09 (rev.1)

LANL Platforms Update

Jim Luján

July 12, 2021

LA-UR-26296

LANL Platforms

```
Current Capability / Commodity Systems
```

Fire / Ice / Cyclone (CTS-1 – 1.33 PF/s, 1104 nodes Intel Broadwell)

Snow (CTS-1 – 445 TF/s, 368 nodes Intel Broadwell)

Grizzly (1490 nodes 1.806 PF/s) / Badger (660 nodes 798 TF/s) Intel Broadwell

Chicoma (1024 nodes) AMD Rome

Advanced Technology Systems

Trinity (ATS-1 – 40 PF/s – 9408 Intel Haswell / 9800 KNL)

Trinitite (364 TF/s – 100 Intel Haswell / 100 KNL)

Application Testbeds

Capulin / Thunder -Cray, Arm TX2 system (167 nodes)

Hinata / Akebono – Fujitsu A64FX – 32 processors

Future Systems

NVidia SDK testbeds (Arm / A100 - TBD) FY21

Chicoma+ (NVidia A100) FY21 / NGP-1 (NVidia Arm / A100+) FY23

CTS-2 - FY22 / Crossroads (ATS-3) - FY22 / ATS-5 - FY26/27

Chicoma (IC)

- HPE Cray EX (12 compute cabinets with 3 CDUs)
 - Similar to Crossroads, Perlmutter, Frontier, etc.
 - Multi-architectural / multi-generational racks allow for future expansion
- 2 racks currently populated with AMD Rome blades
 - 2 racks x 64 blades x 4 dual-socket nodes @ 128 cores per socket
 ~72,000 cores (~54,000 in Grizzly)
 - 512 GB DDR4 per node, 8 channels per socket (256 TB)
 - Cray Slingshot interconnect, Cray CSM, Cray PE
- Future additions:
 - 118 GPU nodes (at least): single socket AMD Milan + 4 NVIDIA A100
 - Additional purchases in FY22 and beyond

Crossroads (ASC)

- Crossroads was awarded March 2020
 - HPE / Cray were integrating
 - HPE Apollo v Cray Shasta Packaging
 - HPCM software v Cray Shasta Software
 - IB v Slingshot
 - Marvell TX4 based system
- Designed contract in anticipation of HPE/Cray integration TDPs
 - Processor, I/O, Software, Interconnect, etc.
- Then...
 - Marvell quietly dropped HPC line of Thunder processors
 - Transitioned to alternate technology proposal Intel SPR w/advanced memory

Crossroads System Overview

Crossroads System

- 24 Cray EX Cabinets (Olympus)
- 8 CDUs
- 1,536 Compute Trays
- 6,144 Dual-socket nodes
- 12,288 Intel Xeon Sapphire Rapids
 - 768 Rosetta Switches

Cray EX Cabinet (Olympus)

- 8 Chassis
- 64 Compute Trays
- 256 Dual-socket nodes
- 512 Intel Xeon Sapphire Rapids
- 32 Fabric Trays
- 32 Rosetta switches

- 2 Compute boards
- **Dual-socket nodes**
- **Intel Xeon Sapphire Rapids**
- Cassini NICs

Fabric Tray

- 1 Compute boards
- 16 Dual-socket nodes
- 12 HPE Stringer optics ports
- 36 Pluggable ports

Crossroads – V? (Intel delays SPR/HBM) – And now...

- Install a substantial portion of Crossroads earlier but with DDR, then upgrade it when HBM parts are available.
- Installation of first half (Phase 1 w/DDR) in early summer 2022
 - Accept Phase 1 (functionality, performance, stability)
 - Transition into the Secure for production cycles
- Installation of second half (Phase 2 w/HBM) late 2022
 - Accept Phase 2 (functionality, performance, stability)
 - Transition into the Secure for production cycles
- Upgrade Phase 1 early in 2023.
 - Remove all DDR SPR sockets and replace with SPR/HBM
 - Crossroads 100% SPR/HBM (6,144 nodes)
- Complete application performance acceptance (full system)

Upgrade 3K SPR nodes w/ 256GB DDR to SPR+HBM

	Phase 1 Install SPR/DDR Compute Nodes	Phase 2 Install SPR/HBM2e Compute Nodes	Phase 3 Upgrade Phase 1 to SPR/HBM2e	Final Config
Installation	May 2022	November 2022	Spring 2023	Spring 2023
Node Config	2 x 56C 2.3Ghz SPR, 16 x 16GB DDR5 4800	2 x 56C 2.3Ghz SPR+HBM each w/ 64GB of HBM2e	2 x 56C 2.3Ghz SPR+HBM each w/ 64GB of HBM2e	
Node Count	3072	3072	3072	6144
DDR GB/Node	256	0	0	
HBM GB/Node		128	128	128
Gflops / Node	8,243	8,243	8,243	
Total DDR PiB	0.876			
Total HBM PiB		0.393	0.393	0.786
Total Peak PF (DP)	25.3	25.3	25.3	50.6

Crossroads - Ongoing Risk Mitigation

- Intel has to provide regular (monthly) updates to demonstrate significant progress, milestones completed towards SPR/HBM delivery (rebuild trust)
- Intel to recommit to SPR/HBM product line (new CEO)
- Crossroads contract is renegotiated with updated milestone schedule to include a final technology commitment (late summer of 2021)

Opportunity to repurpose / retain 6,144 SPR Xeon SPR processors and 49,152 16GB DDR5 DIMMs (786TB)

NGP-1 – Forward looking

- \$80M, delivery in early FY23
- CoDesign² innovation; focus on advancing methods for complex Multiphysics, Machine Learning, Analytics...
- Arm is a powerful chance to shape the future
 - Nimble and affordable tailoring for special needs
 - Other countries have demonstrated great value [e.g Fugaku]

- Modest sized system
- HPE Integrated / Shasta / Slingshot
- Mixed processing
 - CPU only (Grace, Arm-based) ~25%
 - CPU (Grace) / GPU (next-gen) ~75%
- Other details (NDA)

NGP-1 Resource Goals

- Significant investment for computing at LANL
- Unclassified initially (N years) then in secure after that
- Serve the institution including weapons and open science uses
- Not IC or ASC owned for the institution
- Stated uses drive use governance:
 - Institutional directional computing >=1/3
 - Weapons/ASC >=1/3
 - Significant time is allotted to NGP related activities (not application science but computing science (try new system level solution space to assist with tailoring evaluation, etc. pointed at ATS-5 bids/NRE) <=1/3

